РЫЛЬСКИЙ АВИАЦИОННЫЙ ТЕХНИЧЕСКИЙ КОЛЛЕДЖ – ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)

«УТВЕРЖДАЮ»

ЗДК по УР Рыльского АТК — филиала МГТУ ГА

Ю. А. Студитских

« 13 » wand 2024 r.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.14 АРХИТЕКТУРА ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

по специальности среднего профессионального образования 09.02.01 «Компьютерные системы и комплексы»

Рабочая программа профессионального модуля разработана на основе Федерального государственного образовательного стандарта среднего профессионального образования (далее — ФГОС СПО), утвержденного приказом Министерства просвещения Российской Федерации от 25.05.2022 г. № 363 по специальности 09.02.01 Компьютерные системы и комплексы.

Организация-разработчик: Рыльский авиационный технический колледж — филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет гражданской авиации» (МГТУ ГА)

Программу составил:

Сюрин Ю.В., преподаватель Рыльского АТК – филиала МГТУ ГА; Семенихин В.А., преподаватель Рыльского АТК – филиала МГТУ ГА

Рецензент:

Жуковский А.С., преподаватель Рыльского АТК — филиала МГТУ ГА

Рабочая программа обсуждена и одобрена на заседании цикловой комиссии вычислительной техники.

СОДЕРЖАНИЕ

ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	
УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	
КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	

ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.14 АРХИТЕКТУРА ЭВМ И ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

1.1.Область применения рабочей программы

Рабочая программа учебной дисциплины является частью программы подготовки специалистов среднего звена в соответствии с ФГОС СПО по специальности 09.02.01 «Компьютерные системы и комплексы»

1.2. Место учебной дисциплины в структуре программы подготовки специалистов среднего звена

Учебная дисциплина ОП.13 Архитектура ЭВМ и вычислительных систем относится к циклу общепрофессиональных дисциплин ППССЗ

1.3. Цели и задачи дисциплины - требования к результатам освоения дисциплины

В результате освоения дисциплины обучающийся должен уметь:

В результате освоения учебной дисциплины обучающийся должен уметь:

- определять оптимальную конфигурацию оборудования и характеристики устройств для конкретных задач;
- идентифицировать основные узлы персонального компьютера, разъемы для подключения внешних устройств;

В результате освоения учебной дисциплины обучающийся должен знать:

- построение цифровых вычислительных систем и их архитектурные особенности;
- принципы работы основных логических блоков системы;
- параллелизм и конвейеризацию вычислений;
- классификацию вычислительных платформ;
- принципы вычислений в многопроцессорных и многоядерных системах;
- принципы работы кэщ-памяти;
- повышение производительности многопроцессорных и многоядерных систем энергосберегающие технологии

Перечень формируемых компетенций:

OK 1.	Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.	
ОК 2.	Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.	
ОК 3.	Планировать и реализовывать собственное профессиональное и личное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях.	
OK 4.	Эффективно взаимодействовать и работать в коллективе и команде.	
ОК 5.	Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учётом особенностей социального и	

	культурного контекста.
ОК 6.	Проявлять гражданского-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей, в том числе с учётом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения.
ОК 7.	Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях.
ОК 8.	Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого уровня физической подготовленности.
OK 9.	Пользоваться профессиональной документацией на государственном и иностранном языках.

Профессиональные компетенции (ПК):

ПК 3.1. Проводить контроль параметров, диагностику и восстановление работоспособности цифровых устройств компьютерных систем и комплексов.

1.4. Количество часов на освоение программы учебной дисциплины максимальной учебной нагрузки студента 77 час, в том числе: обязательной аудиторной учебной нагрузки студента 68 часов;

СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	77
Обязательная аудиторная учебная нагрузка (всего)	68
в том числе:	
практические занятия	28
Самостоятельная работа обучающегося (всего)	
Промежуточная аттестация в форме экзамена в 3-м семестре	9

2.2. Тематический план и содержание учебной дисциплины ОП.13 Архитектура ЭВМ и вычислительных систем

Наименование разделов и тем	лов Содержание учебного материала, лабораторные работы, практические занятия, самостоятельная работа обучающихся		Уровень освоения
- T	Раздел 1. Архитектура ЭВМ	64	
Тема 1.1. Характеристики ЭВМ и	Классы ЭВМ. Поколения ЭВМ. Суперкомпьютеры, мэйнфреймы, мини и микроЭВМ, рабочие станции, персональные компьютеры. (Урок- визуализация)	2	2
их структура	Характеристики ЭВМ. Быстродействие, разрядность, доступный объём памяти, надёжность.	2	2
	Основные компоненты и блоки ЭВМ. Центральный процессор, оперативная память, интерфейсы, внешние устройства. (Урок- визуализация)	2	2
	Базовые представления об архитектуре ЭВМ. Понятие структуры компьютера и архитектуры. Совместимость ЭВМ на уровне архитектуры.	2	2
	Разновидности архитектур вычислительной техники. Принципы Фон Неймана. Гарвардская архитектура.	2	2
	Основные типы архитектур. Централизованная, иерархическая, магистральная архитектуры. Архитектура ЭВМ на основе чипсета. (Урок- визуализация)	2	2
	Практические занятия: Определение состава оборудования, характеристик и взаимосвязи компонентов материнской платы персонального компьютера. (Работа в малых группах)	6	3
Тема 1.2. Архитектура	Понятие центрального процессора. Архитектура процессоров, свойства процессоров, наиболее распостранённые современные процессоры, процессорные сокеты. (Урок-визуализация)	2	2
процессоров	Классы процессоров. CISC, RISC, VLIW процессоры	2	2
	Технологии повышения производительности процессоров. Конвейеризация.	2	2
	Практические занятия: Определение типа центрального процессора, его характеристик, возможностей, интерфейса. (Работа в малых группах)	2	3
Тема 1.3 Архитектура основной	Основы организации оперативной памяти ЭВМ, адресация памяти. Прямой и обратный порядок байтов. Расположение слов в памяти. (Урок- визуализация)	2	2
памяти	Динамическая память, Статическая память.	2	2
	Иерархическая организация памяти. Кэш-память 1-го, 2-го и 3-го уровней.	2	2
	Реализация систем основной памяти, модули ОЗУ. Модули оперативной памяти (Урок- визуализация)	2	2

	Практические занятия:	2	3
	Определение типа используемой оперативной памяти, типа модулей, организации памяти (Работа в малых группах)		
Тема 1.4	Внутренние интерфейсы (шины) РСІ, РСІ-Е, сРСІ, (Урок- визуализация)	2	2
Архитектура внутренни: интерфейсов	х Архитектура «Северный мост — Южный мост» (Урок- визуализация)	2	2
	Другие подходы к построению архитектур на основе внутренних интерфейсов и чипсетов.	2	2
	Практические занятия:		
	Работа с внутренними интерфейсами на материнской плате (Работа в малых группах)	2	3
	Работа с чипсетом материнской платы. (Работа в малых группах)	2	3
	Раздел 2. Архитектура вычислительных систем.	37	
Тема 2.1.	Классы и архитектуры вычислительных систем. Понятие вычислительной системы. Цели создания	2	2
Архитектура серверов и рабочих станций	вычислительных систем. Многопроцессорные и многомашинные вычислительные системы. (Уроквизуализация)		
	Классификация архитектур вычислительных систем с параллельной обработкой данных. Классификация Флинна. Архитектуры ОКОД, ОКМД, МКОД, МКМД.	2	2
	Симметричная многопроцессорная архитектура. Структурная схема вычислительной системы на основе симметричной многопроцессорной архитектуры. Возможности и ограничения архитектуры. (Уроквизуализация)	2	2
	Асимметричная многопроцессорная архитектура. Структурная схема вычислительной системы на основе симметричной многопроцессорной архитектуры. Возможности и ограничения архитектуры.	2	2
Тема 2.2. Архитектура	Массивно-параллельная архитектура. Структура узла вычислительной системы на базе MPP. Коммуникация узлов. Возможности и применение архитектуры.	2	2
	Параллельная архитектура с векторными процессорами. Признаки PVP-систем. Классы задач, эффективно решаемые на PVP.	2	2
	Кластерная архитектура. Состав узла кластера. Типы кластеров: тип I и тип II. Типологии связи узлов в кластерах. Возможности и применение архитектуры. (Урок- визуализация)	2	2
	Распределённые вычисления. GRID-технология (Урок- визуализация)	2	2
	Практические занятия: Участие в работе проектов распределённых вычислений в системе BOINC (Работа в малых группах)	4	3
	Организация вычислительного кластера	2	3

УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к материально-техническому обеспечению

Реализация программы дисциплины требует наличия учебной аудитории и лаборатории «Сборки, монтажа и эксплуатации средств вычислительной техники».

Оборудование учебной аудитории:

- посадочные места по количеству обучающихся;
- АРМ преподавателя;
- комплект учебно-наглядных пособий.

Технические средства обучения:

- АРМ преподавателя;
- локальная вычислительная сеть с подключением к Internet.

Оборудование лаборатории:

- рабочее место преподавателя;
- посадочные места по количеству обучающихся;
- персональные компьютеры с установленным ПО, монтажные инструменты, диагностические приборы.

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, интернет-ресурсов, дополнительной литературы.

Основная литература:

- 1. Толстобров, А. П. Архитектура ЭВМ: учебное пособие для вузов / А. П. Толстобров. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 154 с. (Высшее образование). ISBN 978-5-534-12377-7. Текст: электронный // ЭБС Юрайт [сайт], URL: https://urait.ru/bcode/476512 (дата обращения: 30.06.2021).
- 2. Новожилов, О. П. Архитектура ЭВМ и систем в 2 ч. Часть 1 : учебное пособие для вузов / О. П. Новожилов. Москва : Издательство Юрайт, 2021. 276 с. (Высшее образование). ISBN 978-5-534-07717-9. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/474545 (дата обращения: 30.06.2021).
- 3. Новожилов, О. П. Архитектура ЭВМ и систем в 2 ч. Часть 2 : учебное пособие для вузов / О. П. Новожилов. Москва : Издательство Юрайт, 2021. 246 с. (Высшее образование). ISBN 978-5-534-07718-6. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/474546 (дата обращения: 30.06.2021).

Дополнительная литература:

- 1. Максимов Н.В., Попов И.И., Партыка Т.Л. Архитектура ЭВМ и вычислительных систем. 5-е изд. перераб. и доп. Учебник. М.: ФОРУМ: ИНФРА-М, 2018. 511 с.
- 2. Скребнев П. В. Электронный курс "Архитектура ЭВМ и вычислительных систем" / Режим доступа: http://www.portal.ratkga.ru/course/view.php?id=2 / 2014 г.

Интернет - ресурсы:

- 1. Российское образование: Федеральный портал: http://www.edu.ru/
- 2. Информационная система "Единое окно доступа к образовательным ресурсам": http://window.edu.ru/library
- 3. Официальный сайт Министерства образования и науки РФ: http://www.mon.gov.ru
- 4. Федеральный центр информационно-образовательных ресурсов: http://fcior.edu.ru
- 5. Единая коллекция цифровых образовательных ресурсов: http://school-collection.edu.ru
- 6. Образовательная платформа Юрайт. Для вузов и ссузов: https://urait.ru
- 7. Научная электронная библиотека: http://elibrary.ru
- 8. Образовательный портал Рыльского АТК филиала МГТУ ГА http://www.portal.ratkga.ru

КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения лабораторных работ, тестирования, а также выполнения обучающимися индивидуальных заданий, домашних работ.

Результа	гы обучения	Формы и методы контроля и
(освоенные умени	я, усвоенные знания)	оценки результатов обучения
У	мения	
		практические работы индивидуальные задания
для конкретных зад	ач;	контрольные вопросы
- идентифицироват персонального ком	ь основные узлы пьютера, разъемы для	
подключения внеш	них устройств;	
31	ания	
	вых вычислительных систем	тестирование
и их архитектурные		карточки-задания
- принципы работы	основных логических	фронтальные опросы,
блоков системы;		индивидуальные беседы
		контрольные вопросы
- классификацию в	ычислительных платформ;	индивидуальные задания
- принципы вычисл	ений в многопроцессорных и	
многоядерных сист	емах;	
-принципы работы	кеш-памяти;	
- повышение произ	водительности	
многопроцессорны	х и многоядерных систем	
энергосберегающи		